Metamath Proof Explorer


Theorem uz0

Description: The upper integers function applied to a non-integer, is the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Assertion uz0 ¬MM=

Proof

Step Hyp Ref Expression
1 dmuz dom=
2 1 eqcomi =dom
3 2 eleq2i MMdom
4 3 notbii ¬M¬Mdom
5 4 biimpi ¬M¬Mdom
6 ndmfv ¬MdomM=
7 5 6 syl ¬MM=