Metamath Proof Explorer


Theorem uzid3

Description: Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis uzid3.1 Z=M
Assertion uzid3 NZNN

Proof

Step Hyp Ref Expression
1 uzid3.1 Z=M
2 1 eleq2i NZNM
3 2 biimpi NZNM
4 uzid2 NMNN
5 3 4 syl NZNN