Metamath Proof Explorer


Theorem infxrlesupxr

Description: The supremum of a nonempty set is greater than or equal to the infimum. The second condition is needed, see supxrltinfxr . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses infxrlesupxr.1 φ A *
infxrlesupxr.2 φ A
Assertion infxrlesupxr φ sup A * < sup A * <

Proof

Step Hyp Ref Expression
1 infxrlesupxr.1 φ A *
2 infxrlesupxr.2 φ A
3 n0 A x x A
4 3 biimpi A x x A
5 2 4 syl φ x x A
6 1 infxrcld φ sup A * < *
7 6 adantr φ x A sup A * < *
8 1 sselda φ x A x *
9 1 supxrcld φ sup A * < *
10 9 adantr φ x A sup A * < *
11 1 adantr φ x A A *
12 simpr φ x A x A
13 infxrlb A * x A sup A * < x
14 11 12 13 syl2anc φ x A sup A * < x
15 eqid sup A * < = sup A * <
16 11 12 15 supxrubd φ x A x sup A * <
17 7 8 10 14 16 xrletrd φ x A sup A * < sup A * <
18 17 ex φ x A sup A * < sup A * <
19 18 exlimdv φ x x A sup A * < sup A * <
20 5 19 mpd φ sup A * < sup A * <