| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infxrlesupxr.1 |
|- ( ph -> A C_ RR* ) |
| 2 |
|
infxrlesupxr.2 |
|- ( ph -> A =/= (/) ) |
| 3 |
|
n0 |
|- ( A =/= (/) <-> E. x x e. A ) |
| 4 |
3
|
biimpi |
|- ( A =/= (/) -> E. x x e. A ) |
| 5 |
2 4
|
syl |
|- ( ph -> E. x x e. A ) |
| 6 |
1
|
infxrcld |
|- ( ph -> inf ( A , RR* , < ) e. RR* ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ x e. A ) -> inf ( A , RR* , < ) e. RR* ) |
| 8 |
1
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. RR* ) |
| 9 |
1
|
supxrcld |
|- ( ph -> sup ( A , RR* , < ) e. RR* ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ x e. A ) -> sup ( A , RR* , < ) e. RR* ) |
| 11 |
1
|
adantr |
|- ( ( ph /\ x e. A ) -> A C_ RR* ) |
| 12 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
| 13 |
|
infxrlb |
|- ( ( A C_ RR* /\ x e. A ) -> inf ( A , RR* , < ) <_ x ) |
| 14 |
11 12 13
|
syl2anc |
|- ( ( ph /\ x e. A ) -> inf ( A , RR* , < ) <_ x ) |
| 15 |
|
eqid |
|- sup ( A , RR* , < ) = sup ( A , RR* , < ) |
| 16 |
11 12 15
|
supxrubd |
|- ( ( ph /\ x e. A ) -> x <_ sup ( A , RR* , < ) ) |
| 17 |
7 8 10 14 16
|
xrletrd |
|- ( ( ph /\ x e. A ) -> inf ( A , RR* , < ) <_ sup ( A , RR* , < ) ) |
| 18 |
17
|
ex |
|- ( ph -> ( x e. A -> inf ( A , RR* , < ) <_ sup ( A , RR* , < ) ) ) |
| 19 |
18
|
exlimdv |
|- ( ph -> ( E. x x e. A -> inf ( A , RR* , < ) <_ sup ( A , RR* , < ) ) ) |
| 20 |
5 19
|
mpd |
|- ( ph -> inf ( A , RR* , < ) <_ sup ( A , RR* , < ) ) |