| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infxrlesupxr.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
| 2 |
|
infxrlesupxr.2 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 3 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 4 |
3
|
biimpi |
⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 5 |
2 4
|
syl |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 6 |
1
|
infxrcld |
⊢ ( 𝜑 → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 8 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
| 9 |
1
|
supxrcld |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ ℝ* ) |
| 12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 13 |
|
infxrlb |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) ≤ 𝑥 ) |
| 14 |
11 12 13
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) ≤ 𝑥 ) |
| 15 |
|
eqid |
⊢ sup ( 𝐴 , ℝ* , < ) = sup ( 𝐴 , ℝ* , < ) |
| 16 |
11 12 15
|
supxrubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ sup ( 𝐴 , ℝ* , < ) ) |
| 17 |
7 8 10 14 16
|
xrletrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → inf ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) ) |
| 18 |
17
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → inf ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) ) ) |
| 19 |
18
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑥 𝑥 ∈ 𝐴 → inf ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) ) ) |
| 20 |
5 19
|
mpd |
⊢ ( 𝜑 → inf ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) ) |