Description: A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supxrubd.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) | |
| supxrubd.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| supxrubd.3 | ⊢ 𝑆 = sup ( 𝐴 , ℝ* , < ) | ||
| Assertion | supxrubd | ⊢ ( 𝜑 → 𝐵 ≤ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supxrubd.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) | |
| 2 | supxrubd.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 3 | supxrubd.3 | ⊢ 𝑆 = sup ( 𝐴 , ℝ* , < ) | |
| 4 | supxrub | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ≤ sup ( 𝐴 , ℝ* , < ) ) | |
| 5 | 1 2 4 | syl2anc | ⊢ ( 𝜑 → 𝐵 ≤ sup ( 𝐴 , ℝ* , < ) ) |
| 6 | 5 3 | breqtrrdi | ⊢ ( 𝜑 → 𝐵 ≤ 𝑆 ) |