Metamath Proof Explorer


Theorem supxrubd

Description: A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses supxrubd.1 φA*
supxrubd.2 φBA
supxrubd.3 S=supA*<
Assertion supxrubd φBS

Proof

Step Hyp Ref Expression
1 supxrubd.1 φA*
2 supxrubd.2 φBA
3 supxrubd.3 S=supA*<
4 supxrub A*BABsupA*<
5 1 2 4 syl2anc φBsupA*<
6 5 3 breqtrrdi φBS