Metamath Proof Explorer


Theorem supxrubd

Description: A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses supxrubd.1 φ A *
supxrubd.2 φ B A
supxrubd.3 S = sup A * <
Assertion supxrubd φ B S

Proof

Step Hyp Ref Expression
1 supxrubd.1 φ A *
2 supxrubd.2 φ B A
3 supxrubd.3 S = sup A * <
4 supxrub A * B A B sup A * <
5 1 2 4 syl2anc φ B sup A * <
6 5 3 breqtrrdi φ B S