Metamath Proof Explorer


Theorem ssrabf

Description: Subclass of a restricted class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses ssrabf.1 _xB
ssrabf.2 _xA
Assertion ssrabf BxA|φBAxBφ

Proof

Step Hyp Ref Expression
1 ssrabf.1 _xB
2 ssrabf.2 _xA
3 df-rab xA|φ=x|xAφ
4 3 sseq2i BxA|φBx|xAφ
5 1 ssabf Bx|xAφxxBxAφ
6 1 2 dfss3f BAxBxA
7 6 anbi1i BAxBφxBxAxBφ
8 r19.26 xBxAφxBxAxBφ
9 df-ral xBxAφxxBxAφ
10 7 8 9 3bitr2ri xxBxAφBAxBφ
11 4 5 10 3bitri BxA|φBAxBφ