Metamath Proof Explorer
Description: Subclass of a restricted class abstraction (deduction form).
(Contributed by Glauco Siliprandi, 5-Jan-2025)
|
|
Ref |
Expression |
|
Hypotheses |
ssrabdf.1 |
|
|
|
ssrabdf.2 |
|
|
|
ssrabdf.3 |
|
|
|
ssrabdf.4 |
|
|
|
ssrabdf.5 |
|
|
Assertion |
ssrabdf |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssrabdf.1 |
|
| 2 |
|
ssrabdf.2 |
|
| 3 |
|
ssrabdf.3 |
|
| 4 |
|
ssrabdf.4 |
|
| 5 |
|
ssrabdf.5 |
|
| 6 |
3 5
|
ralrimia |
|
| 7 |
2 1
|
ssrabf |
|
| 8 |
4 6 7
|
sylanbrc |
|