Description: Subclass of a restricted class abstraction (deduction form). (Contributed by Glauco Siliprandi, 5-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ssrabdf.1 | |- F/_ x A |
|
| ssrabdf.2 | |- F/_ x B |
||
| ssrabdf.3 | |- F/ x ph |
||
| ssrabdf.4 | |- ( ph -> B C_ A ) |
||
| ssrabdf.5 | |- ( ( ph /\ x e. B ) -> ps ) |
||
| Assertion | ssrabdf | |- ( ph -> B C_ { x e. A | ps } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrabdf.1 | |- F/_ x A |
|
| 2 | ssrabdf.2 | |- F/_ x B |
|
| 3 | ssrabdf.3 | |- F/ x ph |
|
| 4 | ssrabdf.4 | |- ( ph -> B C_ A ) |
|
| 5 | ssrabdf.5 | |- ( ( ph /\ x e. B ) -> ps ) |
|
| 6 | 3 5 | ralrimia | |- ( ph -> A. x e. B ps ) |
| 7 | 2 1 | ssrabf | |- ( B C_ { x e. A | ps } <-> ( B C_ A /\ A. x e. B ps ) ) |
| 8 | 4 6 7 | sylanbrc | |- ( ph -> B C_ { x e. A | ps } ) |