Metamath Proof Explorer


Theorem uzidd2

Description: Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses uzidd2.1 φM
uzidd2.2 Z=M
Assertion uzidd2 φMZ

Proof

Step Hyp Ref Expression
1 uzidd2.1 φM
2 uzidd2.2 Z=M
3 1 uzidd φMM
4 3 2 eleqtrrdi φMZ