Metamath Proof Explorer


Theorem uzn0d

Description: The upper integers are all nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses uzn0d.1 φM
uzn0d.2 Z=M
Assertion uzn0d φZ

Proof

Step Hyp Ref Expression
1 uzn0d.1 φM
2 uzn0d.2 Z=M
3 1 2 uzidd2 φMZ
4 3 ne0d φZ