Metamath Proof Explorer


Theorem vc0rid

Description: The zero vector is a right identity element. (Contributed by NM, 4-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses vczcl.1 G = 1 st W
vczcl.2 X = ran G
vczcl.3 Z = GId G
Assertion vc0rid W CVec OLD A X A G Z = A

Proof

Step Hyp Ref Expression
1 vczcl.1 G = 1 st W
2 vczcl.2 X = ran G
3 vczcl.3 Z = GId G
4 1 vcgrp W CVec OLD G GrpOp
5 2 3 grporid G GrpOp A X A G Z = A
6 4 5 sylan W CVec OLD A X A G Z = A