Metamath Proof Explorer


Theorem vcsm

Description: Functionality of th scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses vciOLD.1 G = 1 st W
vciOLD.2 S = 2 nd W
vciOLD.3 X = ran G
Assertion vcsm W CVec OLD S : × X X

Proof

Step Hyp Ref Expression
1 vciOLD.1 G = 1 st W
2 vciOLD.2 S = 2 nd W
3 vciOLD.3 X = ran G
4 1 2 3 vciOLD W CVec OLD G AbelOp S : × X X x X 1 S x = x y z X y S x G z = y S x G y S z z y + z S x = y S x G z S x y z S x = y S z S x
5 4 simp2d W CVec OLD S : × X X