Step |
Hyp |
Ref |
Expression |
1 |
|
vk15.4jVD.1 |
|
2 |
|
vk15.4jVD.2 |
|
3 |
|
vk15.4jVD.3 |
|
4 |
|
exanali |
|
5 |
4
|
biimpri |
|
6 |
3 5
|
e0a |
|
7 |
|
idn1 |
|
8 |
|
alex |
|
9 |
8
|
biimpri |
|
10 |
7 9
|
e1a |
|
11 |
|
sp |
|
12 |
10 11
|
e1a |
|
13 |
|
idn2 |
|
14 |
|
simpl |
|
15 |
13 14
|
e2 |
|
16 |
|
pm3.2 |
|
17 |
12 15 16
|
e12 |
|
18 |
|
19.8a |
|
19 |
17 18
|
e2 |
|
20 |
|
notnot |
|
21 |
19 20
|
e2 |
|
22 |
|
con3 |
|
23 |
2 21 22
|
e02 |
|
24 |
|
hbe1 |
|
25 |
24
|
hbn |
|
26 |
|
hba1 |
|
27 |
26
|
hbn |
|
28 |
6 23 25 27
|
exinst01 |
|
29 |
|
exnal |
|
30 |
29
|
biimpri |
|
31 |
28 30
|
e1a |
|
32 |
|
idn2 |
|
33 |
|
pm3.13 |
|
34 |
1 33
|
e0a |
|
35 |
|
simpr |
|
36 |
13 35
|
e2 |
|
37 |
|
19.8a |
|
38 |
36 37
|
e2 |
|
39 |
|
hbe1 |
|
40 |
6 38 25 39
|
exinst01 |
|
41 |
|
notnot |
|
42 |
40 41
|
e1a |
|
43 |
|
pm2.53 |
|
44 |
34 42 43
|
e01 |
|
45 |
|
exanali |
|
46 |
45
|
con5i |
|
47 |
44 46
|
e1a |
|
48 |
|
sp |
|
49 |
47 48
|
e1a |
|
50 |
|
con3 |
|
51 |
50
|
com12 |
|
52 |
32 49 51
|
e21 |
|
53 |
|
19.8a |
|
54 |
52 53
|
e2 |
|
55 |
|
hbe1 |
|
56 |
31 54 25 55
|
exinst11 |
|
57 |
|
exnal |
|
58 |
57
|
biimpi |
|
59 |
56 58
|
e1a |
|
60 |
59
|
in1 |
|