Metamath Proof Explorer


Theorem vtocl2gaf

Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 10-Aug-2013)

Ref Expression
Hypotheses vtocl2gaf.a _xA
vtocl2gaf.b _yA
vtocl2gaf.c _yB
vtocl2gaf.1 xψ
vtocl2gaf.2 yχ
vtocl2gaf.3 x=Aφψ
vtocl2gaf.4 y=Bψχ
vtocl2gaf.5 xCyDφ
Assertion vtocl2gaf ACBDχ

Proof

Step Hyp Ref Expression
1 vtocl2gaf.a _xA
2 vtocl2gaf.b _yA
3 vtocl2gaf.c _yB
4 vtocl2gaf.1 xψ
5 vtocl2gaf.2 yχ
6 vtocl2gaf.3 x=Aφψ
7 vtocl2gaf.4 y=Bψχ
8 vtocl2gaf.5 xCyDφ
9 1 nfel1 xAC
10 nfv xyD
11 9 10 nfan xACyD
12 11 4 nfim xACyDψ
13 2 nfel1 yAC
14 3 nfel1 yBD
15 13 14 nfan yACBD
16 15 5 nfim yACBDχ
17 eleq1 x=AxCAC
18 17 anbi1d x=AxCyDACyD
19 18 6 imbi12d x=AxCyDφACyDψ
20 eleq1 y=ByDBD
21 20 anbi2d y=BACyDACBD
22 21 7 imbi12d y=BACyDψACBDχ
23 1 2 3 12 16 19 22 8 vtocl2gf ACBDACBDχ
24 23 pm2.43i ACBDχ