Metamath Proof Explorer


Theorem vtoclegft

Description: Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef .) (Contributed by NM, 7-Nov-2005) (Revised by Mario Carneiro, 11-Oct-2016) (Proof shortened by Wolf Lammen, 26-Jan-2025)

Ref Expression
Assertion vtoclegft ABxφxx=Aφφ

Proof

Step Hyp Ref Expression
1 biidd x=Aφφ
2 1 ax-gen xx=Aφφ
3 ceqsalt xφxx=AφφABxx=Aφφ
4 2 3 mp3an2 xφABxx=Aφφ
5 4 ancoms ABxφxx=Aφφ
6 5 biimpd ABxφxx=Aφφ
7 6 3impia ABxφxx=Aφφ