Metamath Proof Explorer


Theorem vtoclegftOLD

Description: Obsolete version of vtoclegft as of 26-Jan-2025. (Contributed by NM, 7-Nov-2005) (Revised by Mario Carneiro, 11-Oct-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion vtoclegftOLD ABxφxx=Aφφ

Proof

Step Hyp Ref Expression
1 elisset ABxx=A
2 exim xx=Aφxx=Axφ
3 1 2 mpan9 ABxx=Aφxφ
4 3 3adant2 ABxφxx=Aφxφ
5 19.9t xφxφφ
6 5 3ad2ant2 ABxφxx=Aφxφφ
7 4 6 mpbid ABxφxx=Aφφ