Metamath Proof Explorer


Theorem weeq12d

Description: Equality deduction for well-orders. (Contributed by Stefan O'Rear, 19-Jan-2015)

Ref Expression
Hypotheses weeq12d.l φR=S
weeq12d.r φA=B
Assertion weeq12d φRWeASWeB

Proof

Step Hyp Ref Expression
1 weeq12d.l φR=S
2 weeq12d.r φA=B
3 weeq1 R=SRWeASWeA
4 1 3 syl φRWeASWeA
5 weeq2 A=BSWeASWeB
6 2 5 syl φSWeASWeB
7 4 6 bitrd φRWeASWeB