Metamath Proof Explorer


Theorem wfaxext

Description: The class of well-founded sets models the axiom of Extensionality ax-ext . Part of Corollary II.2.5 of Kunen2 p. 112. (Contributed by Eric Schmidt, 11-Sep-2025) (Revised by Eric Schmidt, 29-Sep-2025)

Ref Expression
Hypothesis wfax.1 W = R1 On
Assertion wfaxext x W y W z W z x z y x = y

Proof

Step Hyp Ref Expression
1 wfax.1 W = R1 On
2 trwf Tr R1 On
3 treq W = R1 On Tr W Tr R1 On
4 1 3 ax-mp Tr W Tr R1 On
5 2 4 mpbir Tr W
6 traxext Tr W x W y W z W z x z y x = y
7 5 6 ax-mp x W y W z W z x z y x = y