Metamath Proof Explorer


Theorem wfaxext

Description: The class of well-founded sets models the axiom of Extensionality ax-ext . Part of Corollary II.2.5 of Kunen2 p. 112. (Contributed by Eric Schmidt, 11-Sep-2025) (Revised by Eric Schmidt, 29-Sep-2025)

Ref Expression
Hypothesis wfax.1
|- W = U. ( R1 " On )
Assertion wfaxext
|- A. x e. W A. y e. W ( A. z e. W ( z e. x <-> z e. y ) -> x = y )

Proof

Step Hyp Ref Expression
1 wfax.1
 |-  W = U. ( R1 " On )
2 trwf
 |-  Tr U. ( R1 " On )
3 treq
 |-  ( W = U. ( R1 " On ) -> ( Tr W <-> Tr U. ( R1 " On ) ) )
4 1 3 ax-mp
 |-  ( Tr W <-> Tr U. ( R1 " On ) )
5 2 4 mpbir
 |-  Tr W
6 traxext
 |-  ( Tr W -> A. x e. W A. y e. W ( A. z e. W ( z e. x <-> z e. y ) -> x = y ) )
7 5 6 ax-mp
 |-  A. x e. W A. y e. W ( A. z e. W ( z e. x <-> z e. y ) -> x = y )