Step |
Hyp |
Ref |
Expression |
1 |
|
wfax.1 |
|- W = U. ( R1 " On ) |
2 |
|
trwf |
|- Tr U. ( R1 " On ) |
3 |
|
treq |
|- ( W = U. ( R1 " On ) -> ( Tr W <-> Tr U. ( R1 " On ) ) ) |
4 |
2 3
|
mpbiri |
|- ( W = U. ( R1 " On ) -> Tr W ) |
5 |
|
vex |
|- f e. _V |
6 |
5
|
rnex |
|- ran f e. _V |
7 |
6
|
r1elss |
|- ( ran f e. U. ( R1 " On ) <-> ran f C_ U. ( R1 " On ) ) |
8 |
7
|
biimpri |
|- ( ran f C_ U. ( R1 " On ) -> ran f e. U. ( R1 " On ) ) |
9 |
1
|
sseq2i |
|- ( ran f C_ W <-> ran f C_ U. ( R1 " On ) ) |
10 |
1
|
eleq2i |
|- ( ran f e. W <-> ran f e. U. ( R1 " On ) ) |
11 |
8 9 10
|
3imtr4i |
|- ( ran f C_ W -> ran f e. W ) |
12 |
11
|
3ad2ant3 |
|- ( ( Fun f /\ dom f e. W /\ ran f C_ W ) -> ran f e. W ) |
13 |
12
|
ax-gen |
|- A. f ( ( Fun f /\ dom f e. W /\ ran f C_ W ) -> ran f e. W ) |
14 |
13
|
a1i |
|- ( W = U. ( R1 " On ) -> A. f ( ( Fun f /\ dom f e. W /\ ran f C_ W ) -> ran f e. W ) ) |
15 |
|
onwf |
|- On C_ U. ( R1 " On ) |
16 |
|
0elon |
|- (/) e. On |
17 |
15 16
|
sselii |
|- (/) e. U. ( R1 " On ) |
18 |
|
eleq2 |
|- ( W = U. ( R1 " On ) -> ( (/) e. W <-> (/) e. U. ( R1 " On ) ) ) |
19 |
17 18
|
mpbiri |
|- ( W = U. ( R1 " On ) -> (/) e. W ) |
20 |
4 14 19
|
modelaxrep |
|- ( W = U. ( R1 " On ) -> A. x e. W ( A. w e. W E. y e. W A. z e. W ( A. y ph -> z = y ) -> E. y e. W A. z e. W ( z e. y <-> E. w e. W ( w e. x /\ A. y ph ) ) ) ) |
21 |
1 20
|
ax-mp |
|- A. x e. W ( A. w e. W E. y e. W A. z e. W ( A. y ph -> z = y ) -> E. y e. W A. z e. W ( z e. y <-> E. w e. W ( w e. x /\ A. y ph ) ) ) |