Metamath Proof Explorer


Theorem wfaxrep

Description: The class of well-founded sets models the Axiom of Replacement ax-rep . Actually, our statement is stronger, since it is an instance of Replacement only when all quantifiers in A. y ph are relativized to W . Essentially part of Corollary II.2.5 of Kunen2 p. 112, but note that our Replacement is different from Kunen's. (Contributed by Eric Schmidt, 29-Sep-2025)

Ref Expression
Hypothesis wfax.1
|- W = U. ( R1 " On )
Assertion wfaxrep
|- A. x e. W ( A. w e. W E. y e. W A. z e. W ( A. y ph -> z = y ) -> E. y e. W A. z e. W ( z e. y <-> E. w e. W ( w e. x /\ A. y ph ) ) )

Proof

Step Hyp Ref Expression
1 wfax.1
 |-  W = U. ( R1 " On )
2 trwf
 |-  Tr U. ( R1 " On )
3 treq
 |-  ( W = U. ( R1 " On ) -> ( Tr W <-> Tr U. ( R1 " On ) ) )
4 2 3 mpbiri
 |-  ( W = U. ( R1 " On ) -> Tr W )
5 vex
 |-  f e. _V
6 5 rnex
 |-  ran f e. _V
7 6 r1elss
 |-  ( ran f e. U. ( R1 " On ) <-> ran f C_ U. ( R1 " On ) )
8 7 biimpri
 |-  ( ran f C_ U. ( R1 " On ) -> ran f e. U. ( R1 " On ) )
9 1 sseq2i
 |-  ( ran f C_ W <-> ran f C_ U. ( R1 " On ) )
10 1 eleq2i
 |-  ( ran f e. W <-> ran f e. U. ( R1 " On ) )
11 8 9 10 3imtr4i
 |-  ( ran f C_ W -> ran f e. W )
12 11 3ad2ant3
 |-  ( ( Fun f /\ dom f e. W /\ ran f C_ W ) -> ran f e. W )
13 12 ax-gen
 |-  A. f ( ( Fun f /\ dom f e. W /\ ran f C_ W ) -> ran f e. W )
14 13 a1i
 |-  ( W = U. ( R1 " On ) -> A. f ( ( Fun f /\ dom f e. W /\ ran f C_ W ) -> ran f e. W ) )
15 onwf
 |-  On C_ U. ( R1 " On )
16 0elon
 |-  (/) e. On
17 15 16 sselii
 |-  (/) e. U. ( R1 " On )
18 eleq2
 |-  ( W = U. ( R1 " On ) -> ( (/) e. W <-> (/) e. U. ( R1 " On ) ) )
19 17 18 mpbiri
 |-  ( W = U. ( R1 " On ) -> (/) e. W )
20 4 14 19 modelaxrep
 |-  ( W = U. ( R1 " On ) -> A. x e. W ( A. w e. W E. y e. W A. z e. W ( A. y ph -> z = y ) -> E. y e. W A. z e. W ( z e. y <-> E. w e. W ( w e. x /\ A. y ph ) ) ) )
21 1 20 ax-mp
 |-  A. x e. W ( A. w e. W E. y e. W A. z e. W ( A. y ph -> z = y ) -> E. y e. W A. z e. W ( z e. y <-> E. w e. W ( w e. x /\ A. y ph ) ) )