Metamath Proof Explorer


Theorem wfaxsep

Description: The class of well-founded sets models the Axiom of Separation ax-sep . Actually, our statement is stronger, since it is an instance of Separation only when all quantifiers in ph are relativized to W . Part of Corollary II.2.5 of Kunen2 p. 112. (Contributed by Eric Schmidt, 29-Sep-2025)

Ref Expression
Hypothesis wfax.1
|- W = U. ( R1 " On )
Assertion wfaxsep
|- A. z e. W E. y e. W A. x e. W ( x e. y <-> ( x e. z /\ ph ) )

Proof

Step Hyp Ref Expression
1 wfax.1
 |-  W = U. ( R1 " On )
2 ssclaxsep
 |-  ( A. z e. W ~P z C_ W -> A. z e. W E. y e. W A. x e. W ( x e. y <-> ( x e. z /\ ph ) ) )
3 pwwf
 |-  ( z e. U. ( R1 " On ) <-> ~P z e. U. ( R1 " On ) )
4 r1elssi
 |-  ( ~P z e. U. ( R1 " On ) -> ~P z C_ U. ( R1 " On ) )
5 3 4 sylbi
 |-  ( z e. U. ( R1 " On ) -> ~P z C_ U. ( R1 " On ) )
6 1 eleq2i
 |-  ( z e. W <-> z e. U. ( R1 " On ) )
7 1 sseq2i
 |-  ( ~P z C_ W <-> ~P z C_ U. ( R1 " On ) )
8 5 6 7 3imtr4i
 |-  ( z e. W -> ~P z C_ W )
9 2 8 mprg
 |-  A. z e. W E. y e. W A. x e. W ( x e. y <-> ( x e. z /\ ph ) )