Metamath Proof Explorer


Theorem wfis2fgOLD

Description: Obsolete proof of wfis2fg as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 11-Feb-2011)

Ref Expression
Hypotheses wfis2fgOLD.1 y ψ
wfis2fgOLD.2 y = z φ ψ
wfis2fgOLD.3 y A z Pred R A y ψ φ
Assertion wfis2fgOLD R We A R Se A y A φ

Proof

Step Hyp Ref Expression
1 wfis2fgOLD.1 y ψ
2 wfis2fgOLD.2 y = z φ ψ
3 wfis2fgOLD.3 y A z Pred R A y ψ φ
4 sbsbc z y φ [˙z / y]˙ φ
5 1 2 sbiev z y φ ψ
6 4 5 bitr3i [˙z / y]˙ φ ψ
7 6 ralbii z Pred R A y [˙z / y]˙ φ z Pred R A y ψ
8 7 3 syl5bi y A z Pred R A y [˙z / y]˙ φ φ
9 8 wfisg R We A R Se A y A φ