Metamath Proof Explorer


Theorem wfisg

Description: Well-Ordered Induction Schema. If a property passes from all elements less than y of a well-ordered class A to y itself (induction hypothesis), then the property holds for all elements of A . (Contributed by Scott Fenton, 11-Feb-2011) (Proof shortened by Scott Fenton, 17-Nov-2024)

Ref Expression
Hypothesis wfisg.1 yAzPredRAy[˙z/y]˙φφ
Assertion wfisg RWeARSeAyAφ

Proof

Step Hyp Ref Expression
1 wfisg.1 yAzPredRAy[˙z/y]˙φφ
2 wefr RWeARFrA
3 2 adantr RWeARSeARFrA
4 weso RWeAROrA
5 sopo ROrARPoA
6 4 5 syl RWeARPoA
7 6 adantr RWeARSeARPoA
8 simpr RWeARSeARSeA
9 1 adantl RFrARPoARSeAyAzPredRAy[˙z/y]˙φφ
10 9 frpoinsg RFrARPoARSeAyAφ
11 3 7 8 10 syl3anc RWeARSeAyAφ