Metamath Proof Explorer


Theorem wfisg

Description: Well-Ordered Induction Schema. If a property passes from all elements less than y of a well-ordered class A to y itself (induction hypothesis), then the property holds for all elements of A . (Contributed by Scott Fenton, 11-Feb-2011) (Proof shortened by Scott Fenton, 17-Nov-2024)

Ref Expression
Hypothesis wfisg.1 y A z Pred R A y [˙z / y]˙ φ φ
Assertion wfisg R We A R Se A y A φ

Proof

Step Hyp Ref Expression
1 wfisg.1 y A z Pred R A y [˙z / y]˙ φ φ
2 wefr R We A R Fr A
3 2 adantr R We A R Se A R Fr A
4 weso R We A R Or A
5 sopo R Or A R Po A
6 4 5 syl R We A R Po A
7 6 adantr R We A R Se A R Po A
8 simpr R We A R Se A R Se A
9 1 adantl R Fr A R Po A R Se A y A z Pred R A y [˙z / y]˙ φ φ
10 9 frpoinsg R Fr A R Po A R Se A y A φ
11 3 7 8 10 syl3anc R We A R Se A y A φ