Description: Well-Ordered Induction Schema. If a property passes from all elements less than y of a well-ordered class A to y itself (induction hypothesis), then the property holds for all elements of A . (Contributed by Scott Fenton, 11-Feb-2011) (Proof shortened by Scott Fenton, 17-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | wfisg.1 | |
|
Assertion | wfisg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfisg.1 | |
|
2 | wefr | |
|
3 | 2 | adantr | |
4 | weso | |
|
5 | sopo | |
|
6 | 4 5 | syl | |
7 | 6 | adantr | |
8 | simpr | |
|
9 | 1 | adantl | |
10 | 9 | frpoinsg | |
11 | 3 7 8 10 | syl3anc | |