Metamath Proof Explorer


Theorem wfisg

Description: Well-Ordered Induction Schema. If a property passes from all elements less than y of a well-ordered class A to y itself (induction hypothesis), then the property holds for all elements of A . (Contributed by Scott Fenton, 11-Feb-2011) (Proof shortened by Scott Fenton, 17-Nov-2024)

Ref Expression
Hypothesis wfisg.1 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑𝜑 ) )
Assertion wfisg ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 wfisg.1 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑𝜑 ) )
2 wefr ( 𝑅 We 𝐴𝑅 Fr 𝐴 )
3 2 adantr ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → 𝑅 Fr 𝐴 )
4 weso ( 𝑅 We 𝐴𝑅 Or 𝐴 )
5 sopo ( 𝑅 Or 𝐴𝑅 Po 𝐴 )
6 4 5 syl ( 𝑅 We 𝐴𝑅 Po 𝐴 )
7 6 adantr ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → 𝑅 Po 𝐴 )
8 simpr ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → 𝑅 Se 𝐴 )
9 1 adantl ( ( ( 𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴 ) ∧ 𝑦𝐴 ) → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑𝜑 ) )
10 9 frpoinsg ( ( 𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )
11 3 7 8 10 syl3anc ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )