Metamath Proof Explorer


Theorem wfis2g

Description: Well-Ordered Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011)

Ref Expression
Hypotheses wfis2g.1 y=zφψ
wfis2g.2 yAzPredRAyψφ
Assertion wfis2g RWeARSeAyAφ

Proof

Step Hyp Ref Expression
1 wfis2g.1 y=zφψ
2 wfis2g.2 yAzPredRAyψφ
3 nfv yψ
4 3 1 2 wfis2fg RWeARSeAyAφ