Metamath Proof Explorer


Theorem wfis2

Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011)

Ref Expression
Hypotheses wfis2.1 RWeA
wfis2.2 RSeA
wfis2.3 y=zφψ
wfis2.4 yAzPredRAyψφ
Assertion wfis2 yAφ

Proof

Step Hyp Ref Expression
1 wfis2.1 RWeA
2 wfis2.2 RSeA
3 wfis2.3 y=zφψ
4 wfis2.4 yAzPredRAyψφ
5 3 4 wfis2g RWeARSeAyAφ
6 1 2 5 mp2an yAφ
7 6 rspec yAφ