Metamath Proof Explorer
		
		
		
		Description:  Well-Ordered Induction schema, using implicit substitution.
       (Contributed by Scott Fenton, 29-Jan-2011)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | wfis3.1 |  | 
					
						|  |  | wfis3.2 |  | 
					
						|  |  | wfis3.3 |  | 
					
						|  |  | wfis3.4 |  | 
					
						|  |  | wfis3.5 |  | 
				
					|  | Assertion | wfis3 |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wfis3.1 |  | 
						
							| 2 |  | wfis3.2 |  | 
						
							| 3 |  | wfis3.3 |  | 
						
							| 4 |  | wfis3.4 |  | 
						
							| 5 |  | wfis3.5 |  | 
						
							| 6 | 1 2 3 5 | wfis2 |  | 
						
							| 7 | 4 6 | vtoclga |  |