Metamath Proof Explorer


Theorem wfis3

Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011)

Ref Expression
Hypotheses wfis3.1
|- R We A
wfis3.2
|- R Se A
wfis3.3
|- ( y = z -> ( ph <-> ps ) )
wfis3.4
|- ( y = B -> ( ph <-> ch ) )
wfis3.5
|- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) )
Assertion wfis3
|- ( B e. A -> ch )

Proof

Step Hyp Ref Expression
1 wfis3.1
 |-  R We A
2 wfis3.2
 |-  R Se A
3 wfis3.3
 |-  ( y = z -> ( ph <-> ps ) )
4 wfis3.4
 |-  ( y = B -> ( ph <-> ch ) )
5 wfis3.5
 |-  ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) )
6 1 2 3 5 wfis2
 |-  ( y e. A -> ph )
7 4 6 vtoclga
 |-  ( B e. A -> ch )