Metamath Proof Explorer


Theorem wfr2OLD

Description: Obsolete version of wfr2 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 18-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses wfr2OLD.1 RWeA
wfr2OLD.2 RSeA
wfr2OLD.3 F=wrecsRAG
Assertion wfr2OLD XAFX=GFPredRAX

Proof

Step Hyp Ref Expression
1 wfr2OLD.1 RWeA
2 wfr2OLD.2 RSeA
3 wfr2OLD.3 F=wrecsRAG
4 eqid FxGFPredRAx=FxGFPredRAx
5 1 2 3 4 wfrlem16OLD domF=A
6 5 eleq2i XdomFXA
7 1 2 3 wfr2aOLD XdomFFX=GFPredRAX
8 6 7 sylbir XAFX=GFPredRAX