Metamath Proof Explorer


Theorem winainf

Description: A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014)

Ref Expression
Assertion winainf AInacc𝑤ωA

Proof

Step Hyp Ref Expression
1 elwina AInacc𝑤AcfA=AxAyAxy
2 cfon cfAOn
3 eleq1 cfA=AcfAOnAOn
4 2 3 mpbii cfA=AAOn
5 winainflem AAOnxAyAxyωA
6 4 5 syl3an2 AcfA=AxAyAxyωA
7 1 6 sylbi AInacc𝑤ωA