Metamath Proof Explorer


Theorem winalim

Description: A weakly inaccessible cardinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2014)

Ref Expression
Assertion winalim AInacc𝑤LimA

Proof

Step Hyp Ref Expression
1 winainf AInacc𝑤ωA
2 winacard AInacc𝑤cardA=A
3 cardlim ωcardALimcardA
4 sseq2 cardA=AωcardAωA
5 limeq cardA=ALimcardALimA
6 4 5 bibi12d cardA=AωcardALimcardAωALimA
7 3 6 mpbii cardA=AωALimA
8 2 7 syl AInacc𝑤ωALimA
9 1 8 mpbid AInacc𝑤LimA