Metamath Proof Explorer


Theorem winacard

Description: A weakly inaccessible cardinal is a cardinal. (Contributed by Mario Carneiro, 29-May-2014)

Ref Expression
Assertion winacard AInacc𝑤cardA=A

Proof

Step Hyp Ref Expression
1 elwina AInacc𝑤AcfA=AxAyAxy
2 cardcf cardcfA=cfA
3 fveq2 cfA=AcardcfA=cardA
4 id cfA=AcfA=A
5 2 3 4 3eqtr3a cfA=AcardA=A
6 5 3ad2ant2 AcfA=AxAyAxycardA=A
7 1 6 sylbi AInacc𝑤cardA=A