Metamath Proof Explorer


Theorem wl-axc11rc11

Description: Proving axc11r from axc11 . The hypotheses are two instances of axc11 used in the proof here. Some systems introduce axc11 as an axiom, see for example System S2 in https://us.metamath.org/downloads/finiteaxiom.pdf .

By contrast, this database sees the variant axc11r , directly derived from ax-12 , as foundational. Later axc11 is proven somewhat trickily, requiring ax-10 and ax-13 , see its proof. (Contributed by Wolf Lammen, 18-Jul-2023)

Ref Expression
Hypotheses wl-axc11rc11.1 y y = x y y = x x y = x
wl-axc11rc11.2 x x = y x φ y φ
Assertion wl-axc11rc11 y y = x x φ y φ

Proof

Step Hyp Ref Expression
1 wl-axc11rc11.1 y y = x y y = x x y = x
2 wl-axc11rc11.2 x x = y x φ y φ
3 1 pm2.43i y y = x x y = x
4 equcomi y = x x = y
5 4 alimi x y = x x x = y
6 3 5 2 3syl y y = x x φ y φ