Metamath Proof Explorer


Theorem wl-df3-3mintru2

Description: The adder carry in conjunctive normal form. An alternative highly symmetric definition emphasizing the independence of order of the inputs ph , ps and ch . Copy of cadan . (Contributed by Mario Carneiro, 4-Sep-2016) df-cad redefined. (Revised by Wolf Lammen, 18-Jun-2024)

Ref Expression
Assertion wl-df3-3mintru2 cadd φ ψ χ φ ψ φ χ ψ χ

Proof

Step Hyp Ref Expression
1 ordi φ ψ χ φ ψ φ χ
2 1 anbi1i φ ψ χ ψ χ φ ψ φ χ ψ χ
3 wl-df-3mintru2 cadd φ ψ χ if- φ ψ χ ψ χ
4 animorl ψ χ ψ χ
5 wl-ifp4impr ψ χ ψ χ if- φ ψ χ ψ χ φ ψ χ ψ χ
6 4 5 ax-mp if- φ ψ χ ψ χ φ ψ χ ψ χ
7 3 6 bitri cadd φ ψ χ φ ψ χ ψ χ
8 df-3an φ ψ φ χ ψ χ φ ψ φ χ ψ χ
9 2 7 8 3bitr4i cadd φ ψ χ φ ψ φ χ ψ χ