Step |
Hyp |
Ref |
Expression |
1 |
|
ordi |
⊢ ( ( 𝜑 ∨ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜑 ∨ 𝜒 ) ) ) |
2 |
1
|
anbi1i |
⊢ ( ( ( 𝜑 ∨ ( 𝜓 ∧ 𝜒 ) ) ∧ ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜑 ∨ 𝜒 ) ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) |
3 |
|
wl-df-3mintru2 |
⊢ ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ if- ( 𝜑 , ( 𝜓 ∨ 𝜒 ) , ( 𝜓 ∧ 𝜒 ) ) ) |
4 |
|
animorl |
⊢ ( ( 𝜓 ∧ 𝜒 ) → ( 𝜓 ∨ 𝜒 ) ) |
5 |
|
wl-ifp4impr |
⊢ ( ( ( 𝜓 ∧ 𝜒 ) → ( 𝜓 ∨ 𝜒 ) ) → ( if- ( 𝜑 , ( 𝜓 ∨ 𝜒 ) , ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∨ ( 𝜓 ∧ 𝜒 ) ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) ) |
6 |
4 5
|
ax-mp |
⊢ ( if- ( 𝜑 , ( 𝜓 ∨ 𝜒 ) , ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∨ ( 𝜓 ∧ 𝜒 ) ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) |
7 |
3 6
|
bitri |
⊢ ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∨ ( 𝜓 ∧ 𝜒 ) ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) |
8 |
|
df-3an |
⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜑 ∨ 𝜒 ) ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) |
9 |
2 7 8
|
3bitr4i |
⊢ ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) |