| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordi | ⊢ ( ( 𝜑  ∨  ( 𝜓  ∧  𝜒 ) )  ↔  ( ( 𝜑  ∨  𝜓 )  ∧  ( 𝜑  ∨  𝜒 ) ) ) | 
						
							| 2 | 1 | anbi1i | ⊢ ( ( ( 𝜑  ∨  ( 𝜓  ∧  𝜒 ) )  ∧  ( 𝜓  ∨  𝜒 ) )  ↔  ( ( ( 𝜑  ∨  𝜓 )  ∧  ( 𝜑  ∨  𝜒 ) )  ∧  ( 𝜓  ∨  𝜒 ) ) ) | 
						
							| 3 |  | wl-df-3mintru2 | ⊢ ( cadd ( 𝜑 ,  𝜓 ,  𝜒 )  ↔  if- ( 𝜑 ,  ( 𝜓  ∨  𝜒 ) ,  ( 𝜓  ∧  𝜒 ) ) ) | 
						
							| 4 |  | animorl | ⊢ ( ( 𝜓  ∧  𝜒 )  →  ( 𝜓  ∨  𝜒 ) ) | 
						
							| 5 |  | wl-ifp4impr | ⊢ ( ( ( 𝜓  ∧  𝜒 )  →  ( 𝜓  ∨  𝜒 ) )  →  ( if- ( 𝜑 ,  ( 𝜓  ∨  𝜒 ) ,  ( 𝜓  ∧  𝜒 ) )  ↔  ( ( 𝜑  ∨  ( 𝜓  ∧  𝜒 ) )  ∧  ( 𝜓  ∨  𝜒 ) ) ) ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ ( if- ( 𝜑 ,  ( 𝜓  ∨  𝜒 ) ,  ( 𝜓  ∧  𝜒 ) )  ↔  ( ( 𝜑  ∨  ( 𝜓  ∧  𝜒 ) )  ∧  ( 𝜓  ∨  𝜒 ) ) ) | 
						
							| 7 | 3 6 | bitri | ⊢ ( cadd ( 𝜑 ,  𝜓 ,  𝜒 )  ↔  ( ( 𝜑  ∨  ( 𝜓  ∧  𝜒 ) )  ∧  ( 𝜓  ∨  𝜒 ) ) ) | 
						
							| 8 |  | df-3an | ⊢ ( ( ( 𝜑  ∨  𝜓 )  ∧  ( 𝜑  ∨  𝜒 )  ∧  ( 𝜓  ∨  𝜒 ) )  ↔  ( ( ( 𝜑  ∨  𝜓 )  ∧  ( 𝜑  ∨  𝜒 ) )  ∧  ( 𝜓  ∨  𝜒 ) ) ) | 
						
							| 9 | 2 7 8 | 3bitr4i | ⊢ ( cadd ( 𝜑 ,  𝜓 ,  𝜒 )  ↔  ( ( 𝜑  ∨  𝜓 )  ∧  ( 𝜑  ∨  𝜒 )  ∧  ( 𝜓  ∨  𝜒 ) ) ) |