Step |
Hyp |
Ref |
Expression |
1 |
|
3orass |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) ) |
2 |
|
wl-df2-3mintru2 |
⊢ ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) |
3 |
|
xor2 |
⊢ ( ( 𝜑 ⊻ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ) |
4 |
3
|
biancomi |
⊢ ( ( 𝜑 ⊻ 𝜓 ) ↔ ( ¬ ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∨ 𝜓 ) ) ) |
5 |
4
|
anbi1ci |
⊢ ( ( 𝜒 ∧ ( 𝜑 ⊻ 𝜓 ) ) ↔ ( ( ¬ ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∨ 𝜓 ) ) ∧ 𝜒 ) ) |
6 |
|
anass |
⊢ ( ( ( ¬ ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∨ 𝜓 ) ) ∧ 𝜒 ) ↔ ( ¬ ( 𝜑 ∧ 𝜓 ) ∧ ( ( 𝜑 ∨ 𝜓 ) ∧ 𝜒 ) ) ) |
7 |
5 6
|
bitri |
⊢ ( ( 𝜒 ∧ ( 𝜑 ⊻ 𝜓 ) ) ↔ ( ¬ ( 𝜑 ∧ 𝜓 ) ∧ ( ( 𝜑 ∨ 𝜓 ) ∧ 𝜒 ) ) ) |
8 |
7
|
orbi2i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ ( 𝜑 ⊻ 𝜓 ) ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ ( 𝜑 ∧ 𝜓 ) ∧ ( ( 𝜑 ∨ 𝜓 ) ∧ 𝜒 ) ) ) ) |
9 |
|
pm5.63 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ( 𝜑 ∨ 𝜓 ) ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ ( 𝜑 ∧ 𝜓 ) ∧ ( ( 𝜑 ∨ 𝜓 ) ∧ 𝜒 ) ) ) ) |
10 |
|
andir |
⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) |
11 |
10
|
orbi2i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ( 𝜑 ∨ 𝜓 ) ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) ) |
12 |
8 9 11
|
3bitr2i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ ( 𝜑 ⊻ 𝜓 ) ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ( 𝜑 ∧ 𝜒 ) ∨ ( 𝜓 ∧ 𝜒 ) ) ) ) |
13 |
1 2 12
|
3bitr4i |
⊢ ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ ( 𝜑 ⊻ 𝜓 ) ) ) ) |