Metamath Proof Explorer


Theorem wl-df4-3mintru2

Description: An alternative definition of the adder carry. Copy of df-cad . (Contributed by Mario Carneiro, 4-Sep-2016) df-cad redefined. (Revised by Wolf Lammen, 19-Jun-2024)

Ref Expression
Assertion wl-df4-3mintru2 ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ ( 𝜒 ∧ ( 𝜑𝜓 ) ) ) )

Proof

Step Hyp Ref Expression
1 3orass ( ( ( 𝜑𝜓 ) ∨ ( 𝜑𝜒 ) ∨ ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ∨ ( ( 𝜑𝜒 ) ∨ ( 𝜓𝜒 ) ) ) )
2 wl-df2-3mintru2 ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ ( 𝜑𝜒 ) ∨ ( 𝜓𝜒 ) ) )
3 xor2 ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∧ ¬ ( 𝜑𝜓 ) ) )
4 3 biancomi ( ( 𝜑𝜓 ) ↔ ( ¬ ( 𝜑𝜓 ) ∧ ( 𝜑𝜓 ) ) )
5 4 anbi1ci ( ( 𝜒 ∧ ( 𝜑𝜓 ) ) ↔ ( ( ¬ ( 𝜑𝜓 ) ∧ ( 𝜑𝜓 ) ) ∧ 𝜒 ) )
6 anass ( ( ( ¬ ( 𝜑𝜓 ) ∧ ( 𝜑𝜓 ) ) ∧ 𝜒 ) ↔ ( ¬ ( 𝜑𝜓 ) ∧ ( ( 𝜑𝜓 ) ∧ 𝜒 ) ) )
7 5 6 bitri ( ( 𝜒 ∧ ( 𝜑𝜓 ) ) ↔ ( ¬ ( 𝜑𝜓 ) ∧ ( ( 𝜑𝜓 ) ∧ 𝜒 ) ) )
8 7 orbi2i ( ( ( 𝜑𝜓 ) ∨ ( 𝜒 ∧ ( 𝜑𝜓 ) ) ) ↔ ( ( 𝜑𝜓 ) ∨ ( ¬ ( 𝜑𝜓 ) ∧ ( ( 𝜑𝜓 ) ∧ 𝜒 ) ) ) )
9 pm5.63 ( ( ( 𝜑𝜓 ) ∨ ( ( 𝜑𝜓 ) ∧ 𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ∨ ( ¬ ( 𝜑𝜓 ) ∧ ( ( 𝜑𝜓 ) ∧ 𝜒 ) ) ) )
10 andir ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜑𝜒 ) ∨ ( 𝜓𝜒 ) ) )
11 10 orbi2i ( ( ( 𝜑𝜓 ) ∨ ( ( 𝜑𝜓 ) ∧ 𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ∨ ( ( 𝜑𝜒 ) ∨ ( 𝜓𝜒 ) ) ) )
12 8 9 11 3bitr2i ( ( ( 𝜑𝜓 ) ∨ ( 𝜒 ∧ ( 𝜑𝜓 ) ) ) ↔ ( ( 𝜑𝜓 ) ∨ ( ( 𝜑𝜒 ) ∨ ( 𝜓𝜒 ) ) ) )
13 1 2 12 3bitr4i ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ ( 𝜒 ∧ ( 𝜑𝜓 ) ) ) )