Metamath Proof Explorer


Theorem wl-df4-3mintru2

Description: An alternative definition of the adder carry. Copy of df-cad . (Contributed by Mario Carneiro, 4-Sep-2016) df-cad redefined. (Revised by Wolf Lammen, 19-Jun-2024)

Ref Expression
Assertion wl-df4-3mintru2
|- ( cadd ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ ( ch /\ ( ph \/_ ps ) ) ) )

Proof

Step Hyp Ref Expression
1 3orass
 |-  ( ( ( ph /\ ps ) \/ ( ph /\ ch ) \/ ( ps /\ ch ) ) <-> ( ( ph /\ ps ) \/ ( ( ph /\ ch ) \/ ( ps /\ ch ) ) ) )
2 wl-df2-3mintru2
 |-  ( cadd ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ ( ph /\ ch ) \/ ( ps /\ ch ) ) )
3 xor2
 |-  ( ( ph \/_ ps ) <-> ( ( ph \/ ps ) /\ -. ( ph /\ ps ) ) )
4 3 biancomi
 |-  ( ( ph \/_ ps ) <-> ( -. ( ph /\ ps ) /\ ( ph \/ ps ) ) )
5 4 anbi1ci
 |-  ( ( ch /\ ( ph \/_ ps ) ) <-> ( ( -. ( ph /\ ps ) /\ ( ph \/ ps ) ) /\ ch ) )
6 anass
 |-  ( ( ( -. ( ph /\ ps ) /\ ( ph \/ ps ) ) /\ ch ) <-> ( -. ( ph /\ ps ) /\ ( ( ph \/ ps ) /\ ch ) ) )
7 5 6 bitri
 |-  ( ( ch /\ ( ph \/_ ps ) ) <-> ( -. ( ph /\ ps ) /\ ( ( ph \/ ps ) /\ ch ) ) )
8 7 orbi2i
 |-  ( ( ( ph /\ ps ) \/ ( ch /\ ( ph \/_ ps ) ) ) <-> ( ( ph /\ ps ) \/ ( -. ( ph /\ ps ) /\ ( ( ph \/ ps ) /\ ch ) ) ) )
9 pm5.63
 |-  ( ( ( ph /\ ps ) \/ ( ( ph \/ ps ) /\ ch ) ) <-> ( ( ph /\ ps ) \/ ( -. ( ph /\ ps ) /\ ( ( ph \/ ps ) /\ ch ) ) ) )
10 andir
 |-  ( ( ( ph \/ ps ) /\ ch ) <-> ( ( ph /\ ch ) \/ ( ps /\ ch ) ) )
11 10 orbi2i
 |-  ( ( ( ph /\ ps ) \/ ( ( ph \/ ps ) /\ ch ) ) <-> ( ( ph /\ ps ) \/ ( ( ph /\ ch ) \/ ( ps /\ ch ) ) ) )
12 8 9 11 3bitr2i
 |-  ( ( ( ph /\ ps ) \/ ( ch /\ ( ph \/_ ps ) ) ) <-> ( ( ph /\ ps ) \/ ( ( ph /\ ch ) \/ ( ps /\ ch ) ) ) )
13 1 2 12 3bitr4i
 |-  ( cadd ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ ( ch /\ ( ph \/_ ps ) ) ) )