Metamath Proof Explorer


Theorem wl-1mintru1

Description: Using the recursion formula:

"(n+1)-mintru-(m+1)" <-> if- ( ph , "n-mintru-m" , "n-mintru-(m+1)" )

for "1-mintru-1" (meaning "at least 1 out of 1 input is true") by plugging in n = 0, m = 0, and simplifying. The expressions "0-mintru-0" and "0-mintru-1" are base cases of the recursion, meaning "in a sequence of zero inputs, at least 0 / 1 input is true", respectively equvalent to T. / F. .

Negating an "n-mintru1" operation means: All n inputs ph .. th are false. This is also conveniently expressed as -. ( ph \/ .. \/ th ) . Applying this idea here (n = 1) yields the obvious result that in an input sequence of size 1 only then all will be false, if its single input is. (Contributed by Wolf Lammen, 10-May-2024)

Ref Expression
Assertion wl-1mintru1
|- ( if- ( ch , T. , F. ) <-> ch )

Proof

Step Hyp Ref Expression
1 tbtru
 |-  ( ch <-> ( ch <-> T. ) )
2 1 biimpi
 |-  ( ch -> ( ch <-> T. ) )
3 nbfal
 |-  ( -. ch <-> ( ch <-> F. ) )
4 3 biimpi
 |-  ( -. ch -> ( ch <-> F. ) )
5 2 4 casesifp
 |-  ( ch <-> if- ( ch , T. , F. ) )
6 5 bicomi
 |-  ( if- ( ch , T. , F. ) <-> ch )