Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | andir | |- ( ( ( ph \/ ps ) /\ ch ) <-> ( ( ph /\ ch ) \/ ( ps /\ ch ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | andi | |- ( ( ch /\ ( ph \/ ps ) ) <-> ( ( ch /\ ph ) \/ ( ch /\ ps ) ) ) | |
| 2 | ancom | |- ( ( ( ph \/ ps ) /\ ch ) <-> ( ch /\ ( ph \/ ps ) ) ) | |
| 3 | ancom | |- ( ( ph /\ ch ) <-> ( ch /\ ph ) ) | |
| 4 | ancom | |- ( ( ps /\ ch ) <-> ( ch /\ ps ) ) | |
| 5 | 3 4 | orbi12i | |- ( ( ( ph /\ ch ) \/ ( ps /\ ch ) ) <-> ( ( ch /\ ph ) \/ ( ch /\ ps ) ) ) | 
| 6 | 1 2 5 | 3bitr4i | |- ( ( ( ph \/ ps ) /\ ch ) <-> ( ( ph /\ ch ) \/ ( ps /\ ch ) ) ) |