Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | andir | |- ( ( ( ph \/ ps ) /\ ch ) <-> ( ( ph /\ ch ) \/ ( ps /\ ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andi | |- ( ( ch /\ ( ph \/ ps ) ) <-> ( ( ch /\ ph ) \/ ( ch /\ ps ) ) ) |
|
2 | ancom | |- ( ( ( ph \/ ps ) /\ ch ) <-> ( ch /\ ( ph \/ ps ) ) ) |
|
3 | ancom | |- ( ( ph /\ ch ) <-> ( ch /\ ph ) ) |
|
4 | ancom | |- ( ( ps /\ ch ) <-> ( ch /\ ps ) ) |
|
5 | 3 4 | orbi12i | |- ( ( ( ph /\ ch ) \/ ( ps /\ ch ) ) <-> ( ( ch /\ ph ) \/ ( ch /\ ps ) ) ) |
6 | 1 2 5 | 3bitr4i | |- ( ( ( ph \/ ps ) /\ ch ) <-> ( ( ph /\ ch ) \/ ( ps /\ ch ) ) ) |