Metamath Proof Explorer


Theorem andir

Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994)

Ref Expression
Assertion andir
|- ( ( ( ph \/ ps ) /\ ch ) <-> ( ( ph /\ ch ) \/ ( ps /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 andi
 |-  ( ( ch /\ ( ph \/ ps ) ) <-> ( ( ch /\ ph ) \/ ( ch /\ ps ) ) )
2 ancom
 |-  ( ( ( ph \/ ps ) /\ ch ) <-> ( ch /\ ( ph \/ ps ) ) )
3 ancom
 |-  ( ( ph /\ ch ) <-> ( ch /\ ph ) )
4 ancom
 |-  ( ( ps /\ ch ) <-> ( ch /\ ps ) )
5 3 4 orbi12i
 |-  ( ( ( ph /\ ch ) \/ ( ps /\ ch ) ) <-> ( ( ch /\ ph ) \/ ( ch /\ ps ) ) )
6 1 2 5 3bitr4i
 |-  ( ( ( ph \/ ps ) /\ ch ) <-> ( ( ph /\ ch ) \/ ( ps /\ ch ) ) )