| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ordir | 
							 |-  ( ( ( ph /\ ps ) \/ ( ch /\ th ) ) <-> ( ( ph \/ ( ch /\ th ) ) /\ ( ps \/ ( ch /\ th ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							ordi | 
							 |-  ( ( ph \/ ( ch /\ th ) ) <-> ( ( ph \/ ch ) /\ ( ph \/ th ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							ordi | 
							 |-  ( ( ps \/ ( ch /\ th ) ) <-> ( ( ps \/ ch ) /\ ( ps \/ th ) ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							anbi12i | 
							 |-  ( ( ( ph \/ ( ch /\ th ) ) /\ ( ps \/ ( ch /\ th ) ) ) <-> ( ( ( ph \/ ch ) /\ ( ph \/ th ) ) /\ ( ( ps \/ ch ) /\ ( ps \/ th ) ) ) )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							bitri | 
							 |-  ( ( ( ph /\ ps ) \/ ( ch /\ th ) ) <-> ( ( ( ph \/ ch ) /\ ( ph \/ th ) ) /\ ( ( ps \/ ch ) /\ ( ps \/ th ) ) ) )  |