Metamath Proof Explorer


Theorem wl-df2-3mintru2

Description: The adder carry in disjunctive normal form. An alternative highly symmetric definition emphasizing the independence of order of the inputs ph , ps and ch . Copy of cador . (Contributed by Mario Carneiro, 4-Sep-2016) df-cad redefined. (Revised by Wolf Lammen, 12-Jun-2024)

Ref Expression
Assertion wl-df2-3mintru2 ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ ( 𝜑𝜒 ) ∨ ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 andi ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ∨ ( 𝜑𝜒 ) ) )
2 1 orbi1i ( ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ∨ ( 𝜓𝜒 ) ) ↔ ( ( ( 𝜑𝜓 ) ∨ ( 𝜑𝜒 ) ) ∨ ( 𝜓𝜒 ) ) )
3 wl-df-3mintru2 ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ if- ( 𝜑 , ( 𝜓𝜒 ) , ( 𝜓𝜒 ) ) )
4 animorl ( ( 𝜓𝜒 ) → ( 𝜓𝜒 ) )
5 wl-ifpimpr ( ( ( 𝜓𝜒 ) → ( 𝜓𝜒 ) ) → ( if- ( 𝜑 , ( 𝜓𝜒 ) , ( 𝜓𝜒 ) ) ↔ ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ∨ ( 𝜓𝜒 ) ) ) )
6 4 5 ax-mp ( if- ( 𝜑 , ( 𝜓𝜒 ) , ( 𝜓𝜒 ) ) ↔ ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ∨ ( 𝜓𝜒 ) ) )
7 3 6 bitri ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) ∨ ( 𝜓𝜒 ) ) )
8 df-3or ( ( ( 𝜑𝜓 ) ∨ ( 𝜑𝜒 ) ∨ ( 𝜓𝜒 ) ) ↔ ( ( ( 𝜑𝜓 ) ∨ ( 𝜑𝜒 ) ) ∨ ( 𝜓𝜒 ) ) )
9 2 7 8 3bitr4i ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ ( 𝜑𝜒 ) ∨ ( 𝜓𝜒 ) ) )