| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm4.72 | ⊢ ( ( 𝜒  →  𝜓 )  ↔  ( 𝜓  ↔  ( 𝜒  ∨  𝜓 ) ) ) | 
						
							| 2 | 1 | biimpi | ⊢ ( ( 𝜒  →  𝜓 )  →  ( 𝜓  ↔  ( 𝜒  ∨  𝜓 ) ) ) | 
						
							| 3 |  | orcom | ⊢ ( ( 𝜒  ∨  𝜓 )  ↔  ( 𝜓  ∨  𝜒 ) ) | 
						
							| 4 | 2 3 | bitrdi | ⊢ ( ( 𝜒  →  𝜓 )  →  ( 𝜓  ↔  ( 𝜓  ∨  𝜒 ) ) ) | 
						
							| 5 | 4 | anbi2d | ⊢ ( ( 𝜒  →  𝜓 )  →  ( ( 𝜑  ∧  𝜓 )  ↔  ( 𝜑  ∧  ( 𝜓  ∨  𝜒 ) ) ) ) | 
						
							| 6 |  | andi | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∨  𝜒 ) )  ↔  ( ( 𝜑  ∧  𝜓 )  ∨  ( 𝜑  ∧  𝜒 ) ) ) | 
						
							| 7 | 5 6 | bitrdi | ⊢ ( ( 𝜒  →  𝜓 )  →  ( ( 𝜑  ∧  𝜓 )  ↔  ( ( 𝜑  ∧  𝜓 )  ∨  ( 𝜑  ∧  𝜒 ) ) ) ) | 
						
							| 8 | 7 | orbi1d | ⊢ ( ( 𝜒  →  𝜓 )  →  ( ( ( 𝜑  ∧  𝜓 )  ∨  ( ¬  𝜑  ∧  𝜒 ) )  ↔  ( ( ( 𝜑  ∧  𝜓 )  ∨  ( 𝜑  ∧  𝜒 ) )  ∨  ( ¬  𝜑  ∧  𝜒 ) ) ) ) | 
						
							| 9 |  | df-ifp | ⊢ ( if- ( 𝜑 ,  𝜓 ,  𝜒 )  ↔  ( ( 𝜑  ∧  𝜓 )  ∨  ( ¬  𝜑  ∧  𝜒 ) ) ) | 
						
							| 10 |  | biidd | ⊢ ( 𝜑  →  ( 𝜒  ↔  𝜒 ) ) | 
						
							| 11 |  | biidd | ⊢ ( ¬  𝜑  →  ( 𝜒  ↔  𝜒 ) ) | 
						
							| 12 | 10 11 | cases | ⊢ ( 𝜒  ↔  ( ( 𝜑  ∧  𝜒 )  ∨  ( ¬  𝜑  ∧  𝜒 ) ) ) | 
						
							| 13 | 12 | orbi2i | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∨  𝜒 )  ↔  ( ( 𝜑  ∧  𝜓 )  ∨  ( ( 𝜑  ∧  𝜒 )  ∨  ( ¬  𝜑  ∧  𝜒 ) ) ) ) | 
						
							| 14 |  | orass | ⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∨  ( 𝜑  ∧  𝜒 ) )  ∨  ( ¬  𝜑  ∧  𝜒 ) )  ↔  ( ( 𝜑  ∧  𝜓 )  ∨  ( ( 𝜑  ∧  𝜒 )  ∨  ( ¬  𝜑  ∧  𝜒 ) ) ) ) | 
						
							| 15 | 13 14 | bitr4i | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∨  𝜒 )  ↔  ( ( ( 𝜑  ∧  𝜓 )  ∨  ( 𝜑  ∧  𝜒 ) )  ∨  ( ¬  𝜑  ∧  𝜒 ) ) ) | 
						
							| 16 | 8 9 15 | 3bitr4g | ⊢ ( ( 𝜒  →  𝜓 )  →  ( if- ( 𝜑 ,  𝜓 ,  𝜒 )  ↔  ( ( 𝜑  ∧  𝜓 )  ∨  𝜒 ) ) ) |