Step |
Hyp |
Ref |
Expression |
1 |
|
pm4.72 |
⊢ ( ( 𝜒 → 𝜓 ) ↔ ( 𝜓 ↔ ( 𝜒 ∨ 𝜓 ) ) ) |
2 |
1
|
biimpi |
⊢ ( ( 𝜒 → 𝜓 ) → ( 𝜓 ↔ ( 𝜒 ∨ 𝜓 ) ) ) |
3 |
|
orcom |
⊢ ( ( 𝜒 ∨ 𝜓 ) ↔ ( 𝜓 ∨ 𝜒 ) ) |
4 |
2 3
|
bitrdi |
⊢ ( ( 𝜒 → 𝜓 ) → ( 𝜓 ↔ ( 𝜓 ∨ 𝜒 ) ) ) |
5 |
4
|
anbi2d |
⊢ ( ( 𝜒 → 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ) ) |
6 |
|
andi |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ 𝜒 ) ) ) |
7 |
5 6
|
bitrdi |
⊢ ( ( 𝜒 → 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ 𝜒 ) ) ) ) |
8 |
7
|
orbi1d |
⊢ ( ( 𝜒 → 𝜓 ) → ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ 𝜒 ) ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) ) |
9 |
|
df-ifp |
⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
10 |
|
biidd |
⊢ ( 𝜑 → ( 𝜒 ↔ 𝜒 ) ) |
11 |
|
biidd |
⊢ ( ¬ 𝜑 → ( 𝜒 ↔ 𝜒 ) ) |
12 |
10 11
|
cases |
⊢ ( 𝜒 ↔ ( ( 𝜑 ∧ 𝜒 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
13 |
12
|
orbi2i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ( 𝜑 ∧ 𝜒 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) ) |
14 |
|
orass |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ 𝜒 ) ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ( 𝜑 ∧ 𝜒 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) ) |
15 |
13 14
|
bitr4i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ 𝜒 ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜑 ∧ 𝜒 ) ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
16 |
8 9 15
|
3bitr4g |
⊢ ( ( 𝜒 → 𝜓 ) → ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ 𝜒 ) ) ) |