Metamath Proof Explorer


Theorem wl-ifpimpr

Description: If one case of an if- condition is a consequence of the other, the expression in df-ifp can be shortened. (Contributed by Wolf Lammen, 12-Jun-2024)

Ref Expression
Assertion wl-ifpimpr
|- ( ( ch -> ps ) -> ( if- ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 pm4.72
 |-  ( ( ch -> ps ) <-> ( ps <-> ( ch \/ ps ) ) )
2 1 biimpi
 |-  ( ( ch -> ps ) -> ( ps <-> ( ch \/ ps ) ) )
3 orcom
 |-  ( ( ch \/ ps ) <-> ( ps \/ ch ) )
4 2 3 bitrdi
 |-  ( ( ch -> ps ) -> ( ps <-> ( ps \/ ch ) ) )
5 4 anbi2d
 |-  ( ( ch -> ps ) -> ( ( ph /\ ps ) <-> ( ph /\ ( ps \/ ch ) ) ) )
6 andi
 |-  ( ( ph /\ ( ps \/ ch ) ) <-> ( ( ph /\ ps ) \/ ( ph /\ ch ) ) )
7 5 6 bitrdi
 |-  ( ( ch -> ps ) -> ( ( ph /\ ps ) <-> ( ( ph /\ ps ) \/ ( ph /\ ch ) ) ) )
8 7 orbi1d
 |-  ( ( ch -> ps ) -> ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) <-> ( ( ( ph /\ ps ) \/ ( ph /\ ch ) ) \/ ( -. ph /\ ch ) ) ) )
9 df-ifp
 |-  ( if- ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) )
10 biidd
 |-  ( ph -> ( ch <-> ch ) )
11 biidd
 |-  ( -. ph -> ( ch <-> ch ) )
12 10 11 cases
 |-  ( ch <-> ( ( ph /\ ch ) \/ ( -. ph /\ ch ) ) )
13 12 orbi2i
 |-  ( ( ( ph /\ ps ) \/ ch ) <-> ( ( ph /\ ps ) \/ ( ( ph /\ ch ) \/ ( -. ph /\ ch ) ) ) )
14 orass
 |-  ( ( ( ( ph /\ ps ) \/ ( ph /\ ch ) ) \/ ( -. ph /\ ch ) ) <-> ( ( ph /\ ps ) \/ ( ( ph /\ ch ) \/ ( -. ph /\ ch ) ) ) )
15 13 14 bitr4i
 |-  ( ( ( ph /\ ps ) \/ ch ) <-> ( ( ( ph /\ ps ) \/ ( ph /\ ch ) ) \/ ( -. ph /\ ch ) ) )
16 8 9 15 3bitr4g
 |-  ( ( ch -> ps ) -> ( if- ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ ch ) ) )