Metamath Proof Explorer


Theorem wl-ifp4impr

Description: If one case of an if- condition is a consequence of the other, the expression in dfifp4 can be shortened. (Contributed by Wolf Lammen, 18-Jun-2024)

Ref Expression
Assertion wl-ifp4impr
|- ( ( ch -> ps ) -> ( if- ( ph , ps , ch ) <-> ( ( ph \/ ch ) /\ ps ) ) )

Proof

Step Hyp Ref Expression
1 wl-ifpimpr
 |-  ( ( ch -> ps ) -> ( if- ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ ch ) ) )
2 pm4.71
 |-  ( ( ch -> ps ) <-> ( ch <-> ( ch /\ ps ) ) )
3 2 biimpi
 |-  ( ( ch -> ps ) -> ( ch <-> ( ch /\ ps ) ) )
4 3 orbi2d
 |-  ( ( ch -> ps ) -> ( ( ( ph /\ ps ) \/ ch ) <-> ( ( ph /\ ps ) \/ ( ch /\ ps ) ) ) )
5 andir
 |-  ( ( ( ph \/ ch ) /\ ps ) <-> ( ( ph /\ ps ) \/ ( ch /\ ps ) ) )
6 4 5 bitr4di
 |-  ( ( ch -> ps ) -> ( ( ( ph /\ ps ) \/ ch ) <-> ( ( ph \/ ch ) /\ ps ) ) )
7 1 6 bitrd
 |-  ( ( ch -> ps ) -> ( if- ( ph , ps , ch ) <-> ( ( ph \/ ch ) /\ ps ) ) )