Metamath Proof Explorer


Theorem wl-ifp-ncond2

Description: If one case of an if- condition is false, the other automatically follows. (Contributed by Wolf Lammen, 21-Jul-2024)

Ref Expression
Assertion wl-ifp-ncond2 ¬ χ if- φ ψ χ φ ψ

Proof

Step Hyp Ref Expression
1 wl-ifp-ncond1 ¬ χ if- ¬ φ χ ψ ¬ ¬ φ ψ
2 ifpn if- φ ψ χ if- ¬ φ χ ψ
3 notnotb φ ¬ ¬ φ
4 3 anbi1i φ ψ ¬ ¬ φ ψ
5 1 2 4 3bitr4g ¬ χ if- φ ψ χ φ ψ