Description: If one case of an if- condition is false, the other automatically follows. (Contributed by Wolf Lammen, 21-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wl-ifp-ncond2 | ⊢ ( ¬ 𝜒 → ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wl-ifp-ncond1 | ⊢ ( ¬ 𝜒 → ( if- ( ¬ 𝜑 , 𝜒 , 𝜓 ) ↔ ( ¬ ¬ 𝜑 ∧ 𝜓 ) ) ) | |
| 2 | ifpn | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ if- ( ¬ 𝜑 , 𝜒 , 𝜓 ) ) | |
| 3 | notnotb | ⊢ ( 𝜑 ↔ ¬ ¬ 𝜑 ) | |
| 4 | 3 | anbi1i | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ( ¬ ¬ 𝜑 ∧ 𝜓 ) ) |
| 5 | 1 2 4 | 3bitr4g | ⊢ ( ¬ 𝜒 → ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑 ∧ 𝜓 ) ) ) |