Metamath Proof Explorer


Theorem wl-ifp-ncond2

Description: If one case of an if- condition is false, the other automatically follows. (Contributed by Wolf Lammen, 21-Jul-2024)

Ref Expression
Assertion wl-ifp-ncond2 ( ¬ 𝜒 → ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 wl-ifp-ncond1 ( ¬ 𝜒 → ( if- ( ¬ 𝜑 , 𝜒 , 𝜓 ) ↔ ( ¬ ¬ 𝜑𝜓 ) ) )
2 ifpn ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ if- ( ¬ 𝜑 , 𝜒 , 𝜓 ) )
3 notnotb ( 𝜑 ↔ ¬ ¬ 𝜑 )
4 3 anbi1i ( ( 𝜑𝜓 ) ↔ ( ¬ ¬ 𝜑𝜓 ) )
5 1 2 4 3bitr4g ( ¬ 𝜒 → ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( 𝜑𝜓 ) ) )