Metamath Proof Explorer


Theorem wl-ifp-ncond1

Description: If one case of an if- condition is false, the other automatically follows. (Contributed by Wolf Lammen, 21-Jul-2024)

Ref Expression
Assertion wl-ifp-ncond1 ( ¬ 𝜓 → ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ¬ 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 df-ifp ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑𝜒 ) ) )
2 simpr ( ( 𝜑𝜓 ) → 𝜓 )
3 2 con3i ( ¬ 𝜓 → ¬ ( 𝜑𝜓 ) )
4 biorf ( ¬ ( 𝜑𝜓 ) → ( ( ¬ 𝜑𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑𝜒 ) ) ) )
5 3 4 syl ( ¬ 𝜓 → ( ( ¬ 𝜑𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑𝜒 ) ) ) )
6 1 5 bitr4id ( ¬ 𝜓 → ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ¬ 𝜑𝜒 ) ) )