Description: If one case of an if- condition is false, the other automatically follows. (Contributed by Wolf Lammen, 21-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-ifp-ncond1 | ⊢ ( ¬ 𝜓 → ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ifp | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) | |
2 | simpr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) | |
3 | 2 | con3i | ⊢ ( ¬ 𝜓 → ¬ ( 𝜑 ∧ 𝜓 ) ) |
4 | biorf | ⊢ ( ¬ ( 𝜑 ∧ 𝜓 ) → ( ( ¬ 𝜑 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) ) | |
5 | 3 4 | syl | ⊢ ( ¬ 𝜓 → ( ( ¬ 𝜑 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) ) |
6 | 1 5 | bitr4id | ⊢ ( ¬ 𝜓 → ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |