Metamath Proof Explorer


Theorem wl-ifp-ncond1

Description: If one case of an if- condition is false, the other automatically follows. (Contributed by Wolf Lammen, 21-Jul-2024)

Ref Expression
Assertion wl-ifp-ncond1
|- ( -. ps -> ( if- ( ph , ps , ch ) <-> ( -. ph /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 df-ifp
 |-  ( if- ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) )
2 simpr
 |-  ( ( ph /\ ps ) -> ps )
3 2 con3i
 |-  ( -. ps -> -. ( ph /\ ps ) )
4 biorf
 |-  ( -. ( ph /\ ps ) -> ( ( -. ph /\ ch ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) )
5 3 4 syl
 |-  ( -. ps -> ( ( -. ph /\ ch ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) )
6 1 5 bitr4id
 |-  ( -. ps -> ( if- ( ph , ps , ch ) <-> ( -. ph /\ ch ) ) )