Description: If one case of an if- condition is false, the other automatically follows. (Contributed by Wolf Lammen, 21-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wl-ifp-ncond1 | |- ( -. ps -> ( if- ( ph , ps , ch ) <-> ( -. ph /\ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ifp | |- ( if- ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
|
| 2 | simpr | |- ( ( ph /\ ps ) -> ps ) |
|
| 3 | 2 | con3i | |- ( -. ps -> -. ( ph /\ ps ) ) |
| 4 | biorf | |- ( -. ( ph /\ ps ) -> ( ( -. ph /\ ch ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) ) |
|
| 5 | 3 4 | syl | |- ( -. ps -> ( ( -. ph /\ ch ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) ) |
| 6 | 1 5 | bitr4id | |- ( -. ps -> ( if- ( ph , ps , ch ) <-> ( -. ph /\ ch ) ) ) |